Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Hong-Ping Xiao,* Xin-Hua Li, Ming-De Ye and Mao-Lin Hu

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.029$
$w R$ factor $=0.076$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

μ-Terephthalato-bis[aquachloro(1,10phenanthroline)copper(II)]

In the centrosymmetric title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right.$ $\mathrm{Cl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], each Cu atom is surrounded by an O atom from a terephthalate dianion, a water molecule, a Cl atom and the N atoms from a 1,10-phenanthroline heterocycle in an octahedral arrangement. The terephthalate dianion, which functions as a bridge between two Cu atoms, lies on a special position of $\overline{1}$ site symmetry.

Comment

Among the metal complexes of terephthalic acid (Fun et al., 1999; Li et al., 1998; Mori \& Takamizawa, 2000), the copperphenanthroline (phen) system has been well studied; the compounds structurally documented include, for example, dimeric $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)(\text { phen })_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and three polymeric complexes, viz. $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)(\right.$ phen $\left.)\right],\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right.$ (phen)$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)(\right.$ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{ON}\right)$ (Sun et al., 2000, 2001; Zhu et al., 2004). In our previous work, we obtained a chain polymer with both terephthalate dianion and chloro bridges, viz. $\left.\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2} \text { (nphen) }\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{ON}$, where nphen is replaced by 5-nitro-1,10-phenanthroline (nphen) (Xiao \& Zhu, 2003). In the present compound, (I), the Cu atom is linked to four different ligands.

(I)

In centrosymmetric (I), the Cu atom is surrounded by an O atom from a terephthalate dianion, a water molecule, a Cl atom and the N atoms from a 1,10-phenanthroline heterocycle in an octahedral arrangement. The terephthalate dianion, which functions as a bridge between two Cu atoms, lies on a special position of $\overline{1}$ site symmetry. The $\mathrm{Cu} 1-\mathrm{O} 1$ bond length [1.9455 (15) \AA] is in agreement with analogous literature distances in copper complexes containing a bis-monodentate terephthalate ligand (Cano et al., 1997; Deakin et al., 1999; Li

Figure 1
The structure of (I), with the atom numbering of the asymmetric unit, showing displacement ellipsoids at the 50% probability level.

Received 22 January 2004 Accepted 27 January 2004 Online 7 February 2004
\qquad

Zigzag chains formed by hydrogen-bonding interactions, which are shown as dashed lines. H atoms have been omitted.
et al., 2001; Xanthopoulos et al., 1993). The aromatic rings of the terephthalate and phen ligands are almostly coplanar, the dihedral angle being only $5.90(6)^{\circ}$. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance [11.13 (6) Å] through the bridging terephthalate ligand is also in agreement with that reported for bis-monodentate tereph-thalate-bridged copper(II) complexes (Cano et al., 1997; Sun et al., 2000, 2001). There is one intramolecular hydrogen bond ($\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$) and also one intermolecular hydrogen bond $\left[\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Cl}^{\mathrm{i}}\right.$; symmetry code: (i) $\left.1-x, 1-y,-z\right]$, resulting in the formation of zigzag chains (Fig. 2).

Experimental

A solution (10 ml) of dimethylformamide containing $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{mmol}, 0.12 \mathrm{~g}), \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 0.09 \mathrm{~g})$ and terephthalic acid $(0.5 \mathrm{mmol}, 0.08 \mathrm{~g})$ was added slowly to a solution (10 ml) of dimethylformamide containing 1,10-phenanthroline (0.5 mmol , 0.10 g). The mixture was stirred for 30 min and left to stand at room temperature for about a month, after which time green prismatic crystals were obtained.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right) \mathrm{Cl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2^{-}}\right.$	$Z=1$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$D_{x}=1.710 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=758.55$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 678
$a=8.6846(10) \AA$	reflections
$b=9.7645(11) \AA$	$\theta=2.4-22.0^{\circ}$
$c=10.4676(12) \AA$	$\mu=1.68 \mathrm{~mm}^{-1}$
$\alpha=63.154(2)^{\circ}$	$T=273(2) \mathrm{K}$
$\beta=68.579(2)^{\circ}$	Prism, green
$\gamma=78.644(2)^{\circ}$	$0.40 \times 0.31 \times 0.28 \mathrm{~mm}$
$V=736.74(15) \AA^{\circ}$	

Data collection

Bruker SMART APEX area-	2628 independent reflections
detector diffractometer	2458 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.014$
Absorption correction: multi-scan	$\theta_{\max }=25.2^{\circ}$
$(S A D A B S ;$ Bruker, 2000 $)$	$h=-10 \rightarrow 10$
$T_{\min }=0.545, T_{\max }=0.632$	$k=-11 \rightarrow 11$
5423 measured reflections	$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.043 P)^{2}\right. \\
\quad+0.2928 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.32 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.076$
$S=1.09$
2628 reflections
210 parameters
H-atom parameters constrained
Extinction correction: SHELXTL
Extinction coefficient: 0.0009 (2)

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0267(18)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$1.9992(15)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.0187(17)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.4895(7)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9455(15)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$81.46(7)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$95.41(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$87.57(7)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	$93.72(5)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$152.70(8)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$90.06(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$105.83(6)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$98.27(6)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$165.59(7)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{Cl} 1$	$101.43(5)$

Table 2

Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.82	1.86	$2.612(2)$	152
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.82	2.31	$3.0743(16)$	155

Symmetry code: (i) $1-x, 1-y,-z$.
The water H atoms were refined subject to the restraint $\mathrm{O}-\mathrm{H}=$ 0.82 (1) \AA. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.93 \AA$ and with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No. 202137).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cano, J., Munno, G. D., Sanz, J. L., Ruiz, R., Faus, J., Lloret, F., Julve, M. \& Caneschi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1915-1923.
Deakin, L., Arif, A. M. \& Miller, J. S. (1999). Inorg. Chem. 38, 5072-5077.
Fun, H.-K., Shanmuga Sundara Raj, S., Xiong, R. G., Zuo, J. L., Yu, Z. \& You, X. Z. (1999). J. Chem. Soc. Dalton Trans. pp. 1915-1916.

Li, H., Eddaoudi, M., Groy, T. L. \& Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571-8572.
Li., L. C., Liao, D. Z., Jiang, Z. H. \& Yan, S. P. (2001). Polyhedron, 20, 681-684.

Mori, W. \& Takamizawa, S. (2000). J. Solid State Chem. 152, 120-129.
Sun, D. F., Cao, R., Liang, Y. C., Hong, M. C., Su, W. P. \& Weng, J. B. (2000). Acta Cryst. C56, e240-e241.
Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. \& Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.
Xanthopoulos, C. E., Sigalas, M. P., Katsoulos, G. A., Tsipis, C. A., Terzis, A., Mentzafos, M. \& Hountas, A. (1993). Inorg. Chem. 32, 5433-5436.
Xiao, H. P. \& Zhu, L. G. (2003). Acta Cryst. E59, m964-m966.
Zhu, L. G., Xiao, H. P. \& Lu, J. Y. (2004). Inorg. Chem. Commun. 7, 94-96.

